Experimental evolution of sperm count in protandrous self-fertilizing hermaphrodites.

نویسندگان

  • Rosalind L Murray
  • Asher D Cutter
چکیده

Sperm count evolution is driven by sexual selection, with an added role of selection on gamete resource allocation for hermaphrodite spermatogenesis. However, self-fertilization by hermaphrodites retards sexual selection and results in the evolution of reduced investment in sperm or pollen. In contrast to reproduction limited by female gametes (Bateman's Principle), self-fertilizing Caenorhabditis elegans hermaphrodites exhibit sperm-limited reproduction. Caenorhabditis elegans hermaphrodites are thought to experience a fitness trade-off between lifetime fecundity and generation time: longer sperm production decreases the risk of self-sperm depletion, but at the same time delays the onset of selfing and thus increases egg-to-egg generation time. Theory predicts that shorter larval development will favor lower sperm counts and longer development will favor more sperm. To investigate how developmental trajectories affect the evolution of sperm production, we performed experimental evolution by directly competing alleles controlling hermaphrodite sperm count, conducted under different environmental conditions that alter development time. Results are partially consistent with theory: rapid larval development generally favored alleles encoding production of few sperm. However, we identify some previously unrecognized simplifications of the theory and its application to our experimental system. In addition, we evaluated the generality of sperm limitation in C. elegans. Although optimal growth conditions yield sperm limitation, non-optimal conditions induce oocyte limitation, suggesting that this species might conform to Bateman's Principle under many natural settings. These findings demonstrate how developmental trajectories can shape the fitness landscape for the evolution of reproduction and sperm traits, even without sexual selection.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Early social conditions affect female fecundity in hermaphrodites

Social conditions experienced prior to sexual maturity influence reproduction later in life in many animals. In simultaneous hermaphrodites variation in mating group size influences reproductive investment. As the mating group size increases, reproductive resources devoted to the female function decrease in favor of the male function. Prior to sexual maturity many hermaphrodites have a protandr...

متن کامل

Allohormones and sensory traps: a fundamental difference between hermaphrodites and gonochorists?

Multiple mating, sperm storage and sperm digestion cause uncertainty about the fate of donated sperm. In invertebrates these are common processes and increase the selective pressure for tactics that enhance fertilization success. Hence, to assure that donated sperm will be used for their rightful purpose, many different strategies can evolve. For example, biochemical substances — such as pherom...

متن کامل

Intense Sperm-Mediated Sexual Conflict Promotes Reproductive Isolation in Caenorhabditis Nematodes

Conflict between the sexes over reproductive interests can drive rapid evolution of reproductive traits and promote speciation. Here we show that inter-species mating between Caenorhabditis nematodes sterilizes maternal individuals. The principal effectors of male-induced harm are sperm cells, which induce sterility and shorten lifespan by displacing conspecific sperm, invading the ovary, and s...

متن کامل

When Females Produce Sperm: Genetics of C. elegans Hermaphrodite Reproductive Choice

Reproductive behaviors have manifold consequences on evolutionary processes. Here, we explore mechanisms underlying female reproductive choice in the nematode Caenorhabditis elegans, a species in which females have evolved the ability to produce their own self-fertilizing sperm, thereby allowing these "hermaphrodites" the strategic choice to self-reproduce or outcross with males. We report that...

متن کامل

A Genetic Test for Whether Pairs of Hermaphrodites Can Cross-Fertilize in a Selfing Killifish.

Kryptolebias marmoratus, a small killifish that lives in mangrove habitat from southern Florida to Brazil, is one of the planet's only known self-fertilizing hermaphroditic vertebrates. Generation after generation, hermaphroditic individuals simultaneously produce sperm and eggs and internally self-fertilize to produce what are, in effect, highly inbred clones of themselves. Although population...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 214 Pt 10  شماره 

صفحات  -

تاریخ انتشار 2011